The effects of short- and long-term freezing on Porphyra umbilicalis Kützing (Bangiales, 1

2 **Rhodophyta) blade viability**

- Lindsay A. Green^{1, 2*} and Christopher D. Neefus¹ 3
- ¹Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, 4

NH 03824, U.S.A. 5

- 6 ²Present address: Department of Biological Sciences, University of Rhode Island, 120 Flagg
- Road, Kingston, RI 02881, U.S.A. 7
- *Corresponding author lindsaygreen@mail.uri.edu, +16032644638 8

9 Abstract

Seaweeds inhabiting the upper intertidal zone are subjected to temperature, light, and 10 water stresses and vertical distribution has been linked to environmental tolerance. Previous 11 studies have also attributed successful recovery from freezing stress in intertidal seaweeds to 12 desiccation tolerance. Porphyra umbilicalis Kützing is an aseasonal red alga inhabiting the mid 13 to upper intertidal zone in temperate and subarctic regions of the North Atlantic. It is a member 14 of the economically important group of foliose Bangiales, and has been documented to only 15 reproduce asexually via neutral spores in the Northwest Atlantic. The goal of this study was to 16 assess the effects of freezing on the viability of small blades of *P. umbilicalis*. Cultured blades of 17 *P. umbilicalis* $(4.8 \pm 0.22 \text{ mg})$ were air dried to 5% or 30% absolute water content (AWC) and 18 frozen for 1, 3, 6, or 12 months at -80°C or -20°C. Following freezing, blades were rehydrated 19 and the growth rate of each blade was measured weekly for 4 weeks. Photosynthetic efficiency 20

Abbreviations: α , p-value; ANOVA, analysis of variance; AWC, absolute water content; CO₂ carbon dioxide; DNA, deoxyribonucleic acid; dNTP, deoxynucleotide triphosphates; dsDNA, double-stranded deoxyribonucleic acid; Fy/Fm, photosynthetic efficiency of photosystem II; HS, high sensitivity; HSD, honestly significant difference; ln, natural log; Mg⁺², magnesium; NH, New Hampshire; NH₄Cl, ammonium chloride; PAM, pulse amplitude modulated; PCR, polymerase chain reaction; PSI, photosystem I; PSII, photosystem II; *rbc*L, large subunit of the ribulose-bisphosphate carboxylase gene; *rbc*S, small subunit of the ribulose-bisphosphate carboxylase gene; ROS, reactive oxygen species; SGR, specific growth rate; VSE, Von Stosch enriched; W_t, dehydrated weight of blade; W_d, dry weight of blade after 24 hours in a drying oven at 80°C; W_0 , fresh weight of the blade

of photosystem II (F_v/F_m) was assessed for each blade 3 hours and 4 weeks post-rehydration. 21 22 Overall, there was 100% blade survival and all blades continued to grow after rehydration. Although the conditions under which the blades were frozen did have statistically significant 23 effects on post-rehydration growth rate and F_v/F_m , in general the differences were quite small. 24 Post-rehydration growth rates ranged from 7.06 to $8.03 \pm 0.16\%$ day⁻¹ AWC had an effect on 25 post-rehydration growth rates for blades frozen at -80°C, but not blades frozen at -20°C. The 26 length of freezing had a somewhat greater effect on blades with 5% AWC than blades with 30% 27 AWC. Growth rates peaked two weeks post-rehydration followed by a small decline in weeks 3 28 and 4. F_v/F_m values following freezing were generally similar to those recorded in previous 29 30 studies on non-frozen blades, however, blades frozen for 6 months performed better than blades frozen for 12 months. Overall, these results indicate that short- and long-term freezing have little 31 physiological effect on blades of *P. umbilicalis*. Therefore, freezing may be a viable method for 32 preservation of *P. umbilicalis* for aquaculture. 33

34 Keywords: Porphyra umbilicalis; freezing; viability; zonation; preservation; ecophysiology

35 **<u>1.1 Introduction</u>**

Studies have linked the zonation of intertidal seaweeds with tolerance to environmental stresses (Wiltens *et al.*, 1978; Dring and Brown, 1982; Smith *et al.*, 1986; Kim *et al.*, 2008; Sampath-Wiley *et al.*, 2008; Karsten 2012). Seaweeds inhabiting the upper intertidal zone are subjected to a wide variety of temperature, light, and water stresses, most notably freezing and desiccation. It has been shown that species growing in the upper intertidal zone can survive extensive desiccation and osmotic stress with little physiological damage (Smith *et al.*, 1986; Abe *et al.*, 2001; Zou and Gao, 2002; Kim and Garbary, 2004; Liu, 2009; Kim *et al.*, 2013).

43	Seaweeds that survive during the winter months in the intertidal zone of the temperate
44	Northwest Atlantic can encounter freezing stress during low tide. Damage from freezing occurs
45	as a result of intracellular ice formation that can cause damage to cellular membranes and reduce
46	the transfer of energy from the antennae to the reaction center in the photosynthetic apparatus
47	(Dudgeon et al., 1989). Seaweeds inhabiting the upper intertidal zone are more cold tolerant
48	(Frazer et al., 1988) and have lower ice nucleation temperatures (Lundheim, 1997) than
49	seaweeds inhabiting the lower intertidal or shallow subtidal zones.
50	Porphyra umbilicalis is an aseasonal red seaweed inhabiting the mid to upper intertidal
51	zone in temperate and subarctic regions of the North Atlantic (Brodie and Irvine, 2003)
52	Porphyra umbilicalis is a foliose species in the family Bangiaceae and is unique in that it has
53	been documented to only reproduce asexually in the Northwest Atlantic (Blouin et al., 2007).
54	Sporelings and full-grown blades of <i>P. umbilicalis</i> are commonly found throughout the winter
55	months in the Northwest Atlantic when they are exposed to sub-freezing temperatures twice a
56	day during low tide (L. Green, pers. obs.). Previous studies have reported the responses of
57	Porphyra to freezing (Chen et al., 2007; Lin et al., 2010; Wang et al., 2011), but none have
58	looked at the viability of sporelings exposed to freezing for up to 12 months or at the tolerance of
59	P. umbilicalis. Since P. umbilicalis from the Northwest Atlantic lacks the conchocelis phase,
60	which is assumed to persist for multiple years in the subtidal zone (Clokie and Boney, 1980),
61	tolerance of the blade phase to environmental conditions determines the success of the species.
62	The goal of this study was to determine the viability of blades of <i>P. umbilicalis</i> after both short-
63	term (1 month) and long-term frozen storage (3-12 months).
64	1.2 Materials and Methods

65 <u>1.2.1 Genetic Identification of Cultured Material</u>

66	The genus Porphyra contains many species that have very similar morphologies, which
67	makes them difficult to identify without the use of genetic markers. Therefore, DNA barcoding
68	was used to confirm the identity of all cultures used in the study. DNA was extracted using a
69	Puregene TM Isolation Kit per manufacturer's instructions. A 298 base pair segment from the 3'
70	end of the <i>rbc</i> L gene and <i>rbc</i> L- <i>rbc</i> S spacer was used for identification and was amplified with
71	the forward primer RBCL5RC (5'-GTGGTATTCATGCTGGTCAAA-3'; Klein et al., 2003,
72	Mols-Mortensen <i>et al.</i> , 2012) and the reverse primer RBCSPC (5'-
73	CACTATTCTATGCTCCTTA TTKTTAT-3'; Teasdale <i>et al.</i> , 2002).
74	Polymerase chain reactions (PCR) were performed in 50 μ L volumes that contained 10
75	μ L of Taq buffer (Promega GoTaq® Flexi Green), 0.2 mM Mg ⁺² , 1 μ L dNTP mixture, 1 μ L (20
76	mM) of each primer, 0.25 μL Taq polymerase (Promega GoTaq® Flexi), and 4 μL of extracted
77	DNA solution following the PCR protocol of Bray et al. (2006). The PCR products were gel-
78	purified by electrophoresis on a SYBR®Safe treated low melting point agarose gel (Ultrapure™,
79	Invitrogen TM) and the agarose was digested using agarase (Sigma A6306, 1.5 μ L). The
80	concentration of DNA was determined using a dsDNA HS Assay Kit and Qubit® fluorometer
81	(Invitrogen TM) per the manufacturer's instructions. Appropriate volumes of DNA and primers
82	were sent to the University of New Hampshire's Hubbard Center for Genome Studies where the
83	samples were sequenced with an Applied Biosciences 3130 DNA Analyzer.
84	The raw sequence chromatograms were manually trimmed and proofread in Chromas v.
85	2.2 (Technelysium, Pty. Ltd.) and sequences were aligned and assembled in Seq Man Pro v.
86	7.2.1 (DNA Star Inc.). Following alignment, sequences were compared to the <i>rbcL</i> sequence of
87	the Porphyra umbilicalis neotype on GenBank (KF478756) using MegaAlign v. 7.1 (DNA Star
88	Inc.) to confirm species identification.

89 <u>1.2.2 Freezing Experiment Description</u>

90	Neutral spores of Porphyra umbilicalis were isolated from 8 different thalli from
91	populations at Hilton Park, Dover, New Hampshire (NH; n=4; 43°7'11.8" N, 70°49'37.8" W)
92	and Wallis Sands State Beach, Rye, NH (n=4; 43°9'55.2" N, 70°35'28.6" W) and initially
93	cultured at 10°C and 30-60 µmol photons m ⁻² s ⁻¹ under a 12:12 (Light: Dark) photoperiod with
94	light supplied by 4 cool white fluorescent bulbs (Phillips, T12). After blades reached a visible
95	size, they were transferred to 1 L Erlenmeyer flasks and cultured at 15°C and 30-60 µmol
96	photons m ⁻² s ⁻¹ under a 12:12 (L: D) photoperiod with light supplied by 2 cool white fluorescent
97	bulbs (Phillips, T8). Cultures were maintained in Von Stosch Enriched (VSE) seawater
98	(modified from Ott, 1966) with NH ₄ Cl used as the source of nitrogen. Filter-sterilized (1 μ M,
99	Pall® Life Sciences) air was supplied continuously using an aquarium air pump (Aquatic Eco-
100	Systems Inc., Model SL94).
101	Once the blades reached an appropriate size (average 4.8 ± 0.22 mg) the blotted-dry fresh
102	weight was recorded (Mettler Toledo AG204 ± 0.1 mg) and blades were allowed to air dry at
103	room temperature (approx. 18°C) in individual open containers for 30 minutes (30% absolute
104	water content, AWC) or 4 hours (5% AWC), respectively. AWC was calculated as: $AWC=(W_t-W_t-W_t-W_t-W_t-W_t-W_t-W_t-W_t-W_t-$
105	W_d /(W_o - W_d) x 100, when W_t is the dehydrated weight of the blade, W_d is the dry weight of the
106	blade after 24 hours in a drying oven at 80°C, and W_0 is the fresh weight of the blade before
107	dehydration. The conversion factor from fresh weight to dry weight was calculated using
108	separate <i>P. umbilicalis</i> blades from each of the cultures and was determined to be 4.14 (fresh
109	weight/dry weight). The calculated AWCs were 4.72% (± 1.08) and 30.57% (± 1.52) for the 5%
110	and 30% AWC treatments, respectively.

111	After the allotted drying time, blades were weighed again to obtain a dehydrated weight
112	and immediately frozen at -20°C or -80°C for 1, 3, 6, or 12 months in individual 1.7 mL
113	microcentrifuge tubes. Three blades from each of the 8 parent cultures were frozen for each
114	treatment combination (n=24 for each of the 16 AWC x freezing temperature x freezing time
115	treatment combinations). To eliminate the effect of the date of freezing, blades from two cultures
116	were frozen on each of the following dates: 7/18/2012, 7/26/2012, 9/8/2012, and 9/15/2012.
117	Following the designated freezing time, blades were immediately plunged into 125 mL of
118	aerated sterile VSE seawater at pre-freezing conditions (15°C, 30-60 μ mol photons m ⁻² s ⁻¹ , 12:12
119	L: D) and allowed to recover for 3 hours. Following the recovery period, initial photosynthetic
120	efficiency of photosystem II or PSII (F_v/F_m) and blotted-dry fresh weights were recorded. Blades
121	were then cultured for 4 weeks with media changes occurring weekly.
122	1.2.3 Growth Rate and Photosynthetic Efficiency of PSII
123	The fresh weight of each blade was recorded weekly for 4 weeks. Specific Growth Rate
124	(SGR), hereafter referred to as growth rate, was calculated using the equation: SGR=100* ln
125	$[(L_2/L_1)/(t_2-t_1)]$, where L_2 and L_1 are the blade weight at times t_2 and t_1 , respectively.
126	Photosynthetic efficiency of PSII (F_v/F_m) was measured twice for each blade, once after a
127	3 hour recovery period and once at the end of the 4 week experiment. Measurements were taken
128	using a white-light PAM (pulse amplitude modulated) fluorometer (Junior-PAM, Heinz Walz
129	GmbH) following a modified protocol from Figueroa et al. (1997) using a minimum of 10
130	minutes for dark adaptation and a far red pulse prior to measurement.
131	1.2.4 Statistical Analyses
132	Growth rate was analyzed as a split-plot analysis of variance (ANOVA) with absolute

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

main plots and week as the sub plot (Federer and King, 2007). Photosynthetic efficiency of PSII 3 hours and 4 weeks post-rehydration were analyzed separately using a standard ANOVA with a fully factorial design (Federer and King, 2007). The response variables (growth and F_v/F_m) did not conform to the assumptions of normality and were rank transformed prior to analysis (Conover and Iman, 1981). All post-hoc comparisons were made using the Tukey's HSD test, which has been shown to be effective on rank transformed data (Conover and Iman, 1981). All analyses were performed in SYSTAT 13.00.05 (Systat, Inc.). **1.3 Results** 1.3.1 Growth Rate The effect of AWC on the growth rate of Porphyra umbilicalis was dependent on the temperature at which the blades were frozen ($F_{1,3}=29.86$, p=0.012; Fig. 1). Highest growth was observed in blades frozen at -80°C with 5% AWC (8.03 $\pm 0.16\%$ day⁻¹). Post-hoc analysis showed that the growth rate of these blades was significantly higher than blades frozen at -80°C with 30% AWC (p=0.033). There was no significant difference in the growth rates of blades frozen at -20°C with 5% AWC compared with 30% AWC (Fig. 1). The effect of AWC on post-rehydration growth rate was also dependent on the length of freezing ($F_{3,3}=12.37$, p=0.034; Fig. 2). Post-hoc analysis revealed that blades frozen for 1 month with 5% AWC had a significantly lower growth rate $(7.17 \pm 0.23\% \text{ day}^{-1})$ than all other treatments with the exception of blades frozen for 1 month with 30% AWC. The highest average

153 post-rehydration growth rate was recorded from blades frozen at -80°C with 5% AWC for 6

months $(8.41 \pm 0.23\% \text{ day}^{-1})$, but this growth rate was not significantly higher than blades frozen

155 for 3, 6, or 12 months at either 5% or 30% AWC (Fig. 2).

156	Growth rates of <i>P. umbilicalis</i> blades changed significantly during the 4-week post-
157	rehydration period ($F_{3,1460}$ =24.66, p <0.001). Blades experienced peak growth two weeks after
158	rehydration (8.92 \pm 0.163% day ⁻¹), followed by a small decline in weeks 3 (8.04 \pm 0.16% day ⁻¹)
159	and 4 (7.23 $\pm 0.16\%$ day ⁻¹). The slowest weekly growth rate was observed one week post-
160	rehydration (7.06 $\pm 0.16\%$ day ⁻¹). Post-hoc analysis revealed that growth rates during weeks 1
161	and 4 were not significantly different, while growth during the second week was significantly
162	higher than all other weeks (week 1: $p \le 0.001$, week 2: $p = 0.011$, week 4: $p \le 0.001$).
163	1.3.2 Photosynthetic Efficiency of PSII
164	1.3.2.1 Short-Term Post-Rehydration Recovery (3 hours): Photosynthetic efficiency of
165	PSII (F_v/F_m) 3 hours after rehydration was significantly affected by AWC ($F_{1,365}$ =3.9, p=0.049),
166	freezing temperature ($F_{1,365}$ =10.17, p =0.002), and the length of freezing ($F_{3,365}$ =2.68, p =0.047);
167	these effects were independent of one another. Blades frozen with 5% AWC had a significantly
168	higher F_v/F_m (0.6 ±0.01) than blades with 30% AWC (0.56 ±0.01) 3 hours after rehydration.
169	Further, blades frozen at -80°C showed a higher F_v/F_m (0.6 ±0.1) following short-term recovery
170	than blades frozen at -20°C (0.56 \pm 0.01). Blades frozen for 6 months had a significantly higher
171	F_v/F_m than blades frozen for 12 months (<i>p</i> =0.03; Table 1).
172	1.3.2.2 Long-Term Post-Rehydration Recovery (4 weeks): The length of freezing was the
173	only factor that significantly affected the F_v/F_m of <i>Porphyra umbilicalis</i> 4 weeks after
174	rehydration ($F_{3,360}$ =3.63, p =0.013). While the pattern was identical to that seen after 3 hours of
175	rehydration, blades frozen at all 4 time points had an increase in F_v/F_m between 3 hours post-
176	freezing and 4 weeks post-rehydration (Table 1). Post-hoc analysis showed that blades frozen for
177	6 months had a significantly higher F_v/F_m 4 weeks post-rehydration than blades frozen for 12
178	months (<i>p</i> =0.008; Table 1).

179 **<u>1.4 Discussion</u>**

180 Our results show that Porphyra umbilicalis can survive freezing for up to 12 months 181 without the use of cryoprotectants and recover to grow normally. We found no practical difference in post-rehydration growth rates between the tested AWCs and freezing temperatures 182 (Fig. 1). Interestingly, the post-rehydration growth rate of *P. umbilicalis* was significantly lower 183 after 1 month frozen than after 3, 6, or 12 months frozen (Fig. 2). These blades were frozen along 184 with the 3, 6 and 12 month blades from the same cultures, placed in the same freezers, and 185 thawed at four separate time points (see methods), eliminating the possibility that this response is 186 a result of unique conditions during freezing or thawing of these blades. At present the 187 mechanisms for the deleterious effect of short-term freezing are unknown. Further, growth rates 188 of *P. umbilicalis* blades frozen for up to 12 months were equivalent to growth rates recorded in a 189 previous study on non-frozen blades at 15°C under a 12:12 L:D photoperiod ($6.7 \pm 0.43\%$ day⁻¹; 190 191 Green 2014).

Desiccation, freezing, and thawing all invariably lead to cellular damage. Boroda et al. 192 (2014) reported that the red alga Porphyridium purpureum (Bory de Saint-Vincent) K.M. Drew 193 194 & R. Ross showed no discernible growth for 5-6 days after thawing from cryopreservation at -196°C, but recovered to grow faster than control cultures. Although much less pronounced, a lag 195 in initial growth post-rehydration was also documented in our study and is likely a result of the 196 energetic cost of repairing damage that occurred during desiccation, freezing, and/or thawing. 197 Biochemical processes are temperature dependent and the rate of processes decreases 198 199 with decreasing temperature. Although denaturation can occur during storage at -20°C, all 200 biochemical processes are insignificant at temperatures of -80°C and below (Meryman, 1956). Thus, if denaturation was occurring in the blades stored at -20°C but not in those at -80°C it 201

202	could be reflected in the F_v/F_m immediately following rehydration. While we found that the
203	F_v/F_m was significantly lower in blades stored at -20°C, the difference was actually quite small
204	and it disappeared after 4 weeks of recovery. Duration of freezing might also be expected to
205	impact the degree of denaturation. Overall, we found that freezing duration had very little effect
206	on F_v/F_m although it was slightly lower in blades frozen for 12 months than blades frozen for 1,
207	3, or 6 months (Table 1). Interestingly, the difference was independent of freezing temperature
208	and it did not disappear after 4 weeks of recovery (Table 1). Perhaps more importantly, our
209	reported F _v /F _m values were similar to those reported in a previous study on non-frozen blades
210	(0.65 ±0.004 for blades grown at 15°C and 12:12 L:D; Green 2014).
211	Freezing survival has been strongly linked to water content in seaweeds, and thus to
212	desiccation tolerance (Chen et al., 2007; Lin et al., 2010; Wang et al., 2011). Desiccation stress
213	can lead to a disruption in the transfer of photochemical energy in the photosynthetic apparatus
214	(especially between PSI and PSII and in the oxygen-evolving complex), causing the formation of
215	dangerous reactive oxygen species or ROS (Wiltens et al., 1978). ROS are highly reactive
216	molecules that can interact with most cellular components and cause considerable damage
217	including protein destabilization (Sampath-Wiley et al., 2008). Studies have shown that
218	photosynthesis in desiccation tolerant seaweeds increases during emersion, most likely as a
219	response to air CO ₂ availability (Blouin et al., 2011). Studies have also shown an upregulation of
220	glutathione reductase, catalase, and carotenoids in Porphyra umbilicalis (Sampath-Wiley et al.,
221	2008) and increases in the concentration of ascorbate, β -carotene, glutathione reductase, and
222	catalase in Mastocarpus stellatus (Stackhouse) Guiry (Collén and Davison, 1999) in response to
223	emersion. Catalase, glutathione reductase, ascorbate, β -carotene, and to a lesser extent
224	carotenoids, act as antioxidants and ROS scavengers, neutralizing reactive molecules before

225	damage can occur (Collén and Davison, 1999; Sampath-Wiley et al., 2008). We propose that the
226	upregulation of photosynthesis, antioxidant synthesis, and ROS scavenger formation, as a
227	response to desiccation stress, while not measured in this study, are partially responsible for the
228	physiological tolerance of <i>P. umbilicalis</i> to long-term freezing. These mechanisms further
229	explain the significant difference in F_v/F_m 3 hours post-rehydration that we found between blades
230	with 5% and 30% AWC. Blades dried to 5% AWC were exposed to desiccation for a
231	considerably longer time (4 vs. 0.5 hours), presumably allowing for increased accumulation of
232	protective molecules that play an important role in recovery following rehydration.
233	Another critical process in survival from freezing stress is the rate of freezing and
234	thawing (Kuwano et al., 1993, 1996). Slow freezing tends to favor the formation of extracellular
235	ice crystals, while rapid freezing results in the formation of ice crystals predominately inside the
236	cell (Meryman, 1956); intracellular ice formation is considered universally lethal (Guy, 1990).
237	Thawing rates are also critical to survival and rapid thawing prevents the growth of ice crystals
238	and minimizes cellular damage (Lin et al., 2010). In this study, P. umbilicalis blades were frozen
239	and thawed nearly instantaneous (L. Green, pers. obs.). Therefore, we propose that the survival
240	of <i>P. umbilicalis</i> exposed to long-term freezing was dependent on: 1) the reduction in water
241	content prior to freezing to minimize the amount of intracellular ice formation, 2) the induction
242	of protective mechanisms (i.e. synthesis of antioxidants and ROS scavengers) prior to freezing to
243	minimize the damage upon rehydration, and 3) the rapid thawing of blades following freezing to
244	prevent growth of intracellular ice crystals.
245	Our results are the first to demonstrate quantitatively 100% survival of gametophytic

Our results are the first to demonstrate quantitatively 100% survival of gametophytic blades of foliose Bangiales exposed to long-term freezing stress for up to 12 months without using cryoprotectants. Recently, *Porphyra umbilicalis* has been the focus of research aimed at

the development of a nori aquaculture industry in the Northwest Atlantic (Blouin et al., 2007). 248 249 Cryopreservation has been reported to be a useful means of preserving strains of important seaweeds with little effort (Kuwano et al., 1993, 1996). An important implication of this research 250 is that frozen storage can be used as a preservation method for seed stock of *P. umbilicalis* for 251 aquaculture. Following our methods, mass quantities of small blades can be produced at one time 252 and then frozen in household freezers (-20°C). This method makes it practical for aquaculture 253 facilities to set-up their own nori nursery and not rely on an outside source of seed stock, which 254 has been an obstacle limiting the development of a nori aquaculture industry in the Northwest 255 Atlantic (Green 2014). 256

257 **<u>1.6 Acknowledgements</u>**

We would like to acknowledge Drs. Leland Jahnke, Arthur Mathieson, Charles Yarish, and David Berlinsky for their valuable feedback on this manuscript. Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number XXXX. This work was supported by the USDA National Institute of Food and Agriculture Hatch Project 223365. This research was also funded by a grant from New Hampshire Sea Grant (R/CFR-14, C.D. Neefus)

264 **<u>1.7 References</u>**

- Abe, S., Kurashima, A., Yokohama, Y., Taneka, J., 2001. The cellular ability of desiccation
 tolerance in Japanese intertidal seaweeds. Bot. Mar. 44, 125-131.
- Blouin, N.A., Brodie, J.A., Grossman, A.C., Xu, P., Brawley, S.H., 2011. *Porphyra*: a marine
 crop shaped by stress. Trends Plant Sci. 16(1), 29-37.
- 269 Blouin, N., Xiugeng, F., Peng, J., Yarish, C., Brawley, S.H., 2007. Seeding nets with neutral
- 270 spores of the red alga *Porphyra umbilicalis* (L.) Kützing for use in integrated multi

- trophic aquaculture (IMTA). Aquaculture 270, 77-91.
- Boroda, A.V., Aizdaicher, N.A., Odintsova, N.A., 2014. The influence of ultra-low temperatures
 on marine microalgae cells. J. Appl. Phycol. 26, 387-397.
- 274 Bray, T.L., Neefus, C.D., Mathieson, A.C., 2006. Morphological and molecular variability of
- 275 *Porphyra purpurea* (Roth) C. Agardh (Rhodophyta, Bangiales) from the Northwest
- Atlantic. Nova Hedwigia 82, 1-22.
- Brodie, J., Irvine, L.M., 2003. Seaweeds of the British Isles, Volume 1 Rhodophyta, Part 3B
 Bangiophycidae. The National History Museum, London.
- 279 Chen, C.S., Weng, L., Wang, L., Ji, D.H., Xie, C.T., Xu, Y., 2007. Influence of desiccation and
- cold preservation on the survival of *Porphyra haitanensis* and unwanted alga. Acta
- 281 Oceanol. Sin. 29(2), 131-136.
- Clokie, J.J.P., Boney, A.D., 1980. *Conchocelis* distribution in the Firth of Clyde: estimates of the
 lower limits of the photic zone. J. Exp. Mar. Biol. Ecol. 46, 111-125.
- 284 Collén, J., Davison, I.R., 1999. Stress tolerance and reactive oxygen metabolism in the intertidal
- red seaweeds *Mastocarpus stellatus* and *Chondrus crispus*. Plant Cell Environ. 22, 1143-
- 286 1151.
- Conover, W.J., Iman, R.L., 1981. Rank transformation as a bridge between parametric and
 nonparametric statistics. Am. Stat. 35(3), 124-129.
- Dring, M.J., Brown, F.A., 1982. Photosynthesis of intertidal brown algae during and after
 periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol.
 Prog. Ser. 8, 301-308.
- 292 Dudgeon, S.R., Davison, I.R., Vadas, R.L., 1989. Effect of freezing on photosynthesis of
- 293 intertidal macroalgae: relative tolerance of *Chondrus crispus* and *Mastocarpus stellatus*

(Rhodophyta). Mar. Biol. 101(1), 107-114. 294

- 295 Federer, W.T., King, F., 2007. Variations on split plot and split block experimental designs.
- Wiley-Interscience, Hoboken. 296
- Figueroa, F.L., Salles, S., Aguilera, J., Jimenez, C., Mercado, J., Vinegla, B., Flores-Moya, A., 297
- Altamirano, M., 1997. Effects of solar radiation of photoinhibition and pigmentation in 298 the red alga Porphyra leucosticta. Mar. Ecol. Prog. Ser. 151, 81-90. 299
- Frazer, A.W.J., Brown, M.T., Bannister, P., 1988. The frost resistance of some littoral and sub-300 littoral algae from southern New Zealand. Bot. Mar. 31(5), 461-464. 301
- Green, L.A., 2014. Physiological studies of cultured New England nori, *Porphyra umbilicalis* 302
- 303 Kützing and Pyropia leucosticta (Thuret) Neefus & J. Brodie, and implications for their
- use in integrated multi-trophic aquaculture systems. Ph.D. Dissertation, University of 304 New Hampshire. 305
- Guy, C.L., 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. 306 Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223.
- Karsten, U., 2012. Seaweed acclimation to salinity and desiccation stress, in: Wiencke, C., 308
- Bischof, K. (Eds.), Seaweed Biology: Novel Insights into Ecophysiology, Ecology, and 309
- Utilization. Springer, New York, pp. 87-107. 310

307

- Kim, J.K., Kraemer, G.P., Yarish, C., 2008. Physiological activity of *Porphyra* in relation to 311 eulittoral zonation. J. Exp. Mar. Biol. Ecol. 365, 75-85. 312
- Kim, J.K., Kraemer, G.P., Yarish, C., 2013. Emersion induces nitrogen release and alteration of 313 314 nitrogen metabolism in the intertidal genus Porphyra. PLoS One 8(7), 1-14.
- Kim, K.Y., Garbary, D.J., 2004. Fluorescence responses of photosynthesis to extremes of 315
- hyposalinity, freezing and desiccation in the intertidal crust *Hildebrandia rubra* 316

- 317 (Hildenbrandiales, Rhodophyta). Phycologia 45(6), 680-686.
- 318 Klein, A.S., Mathieson, A.C., Neefus, C.D., Clain, D.F., Taylor, H.A., Teasdale, B.W., West,
- A.L., Hehre, E.J., Brodie, J., Yarish, C., Wallace, A.L., 2003. Identification of north-
- 320 western Atlantic *Porphyra* (Bangiaceae, Bangiales) based on sequence variation in
- nuclear SSU and plastid *rbc*L genes. Phycologia 42(2), 109-122.
- Kuwano, K., Aruga, Y., Saga, N., 1993. Cryopreservation of the conchocelis of the marine alga
 Porphyra yezoensis Ueda (Rhodophyta) in liquid nitrogen. Plant Sci. 94, 215-225.
- Kuwano, K., Aruga, Y., Saga, N., 1996. Cryopreservation of clonal gametophytic thalli of
- 325 *Porphyra* (Rhodophyta). Plant Sci. 116, 117-124.
- Lin, A.P., Wang, G.C., Shen, S.D., Yang, F., Pan, G.H., 2010. Two specific causes of cell
- 327 mortality in freeze-thaw cycle of young thalli of *Porphyra yezoensis* (Bangiales,
- 328 Rhodophyta). J. Phycol. 46, 773-779.
- Liu, Y.C., 2009. Mechanism for differential desiccation tolerance in *Porphyra* species. Ph.D.
 Dissertation, Northeastern University.
- Lundheim, R., 1997. Ice nucleation in seaweeds in relation to vertical zonation. J. Phycol. 33,
 739-742.
- Meryman, H.T., 1956. Mechanics of freezing in living cells and tissue. Science 124 (3221), 515521.
- Mols-Mortensen, A., Neefus, C.D., Nielsen, R., Gunnarsson, K., Egilsdóttir, S., Pedersen, P.M.,
 Brodie, J., 2012. New insights into the biodiversity and generic relationships of foliose
 Bangiales (Rhodophyta) in Iceland and the Faroe Islands. Eur. J. Phycol. 47(2), 146-159.
- 338 Ott, F.D., 1966. A selected listing of xenic cultures. Systematics-Ecology Program No. 72 (Mar.
- Biol. Lab., Woods Hole, MA), 1-45.

Sampath-Wiley, P., Neefus, C.D., Jahnke, L.S., 2008. Seasonal effects of sun exposure and
emersion on intertidal seaweed physiology: fluctuations in antioxidant contents,
photosynthetic pigments, and photosynthetic efficiency in the red alga Porphyra
umbilicalis Kützing (Rhodophyta, Bangiales). J. Exp. Mar. Biol. Ecol. 361, 83-91.
Smith, C.M., Satoh, K., Fork, D.C., 1986. The effects of osmotic tissue dehydration and air
drying on the morphology and energy transfer in two species of Porphyra. Plant Physiol.
80, 843-847.
Teasdale, B., West, A., Taylor, H., Klein, A., 2002. A simple restriction length polymorphism
(RFLP) assay to discriminate common Porphyra (Bangiophyceae, Rhodophyta) taxa
from the Northwest Atlantic. J. Appl. Phycol. 14, 293-298.
Wang, W.J., Wang F.J., Zhu, J.Y., Sun, X.T., Yao, C.Y., Xu, P., 2011. Freezing tolerance of
Porphyra yezoensis (Bangiales, Rhodophyta) gametophyte assessed by chlorophyll
fluorescence. J. Appl. Phycol. 23, 1017-1022.
Wiltens, J., Schreiber, U., Vidaver, W., 1978. Chlorophyll fluorescence induction: an indicator of
photosynthetic activity in marine algae undergoing desiccation. Can. J. Bot. 56, 2787-
2794.
Zou, D., Gao, K., 2002. Effects of desiccation and CO ₂ concentrations on emersed
photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in
China. Eur. J. Phycol. 37, 587-592.

360 **Figures:**

Fig. 1: Post-rehydration growth rate (% growth day⁻¹) of *Porphyra umbilicalis* blades exposed to long-term freezing at -20°C and -80°C with either 5% or 30% absolute water content (AWC) at the time of freezing (mean \pm SE). Bars with a letter in common are not significantly different (α =0.05). Although analysis was performed on rank transformed data, original data and standard errors are graphed with letters derived from post-hoc Tukey's analysis of the rank transformed data.

Fig. 2: Post-rehydration growth rate (% growth day⁻¹) of *Porphyra umbilicalis* blades exposed to long-term freezing for 1, 3, 6, and 12 months with either 5% or 30% absolute water content (AWC) at the time of freezing (mean \pm SE). Bars with a letter in common are not significantly different (α =0.05). Although analysis was performed on rank transformed data, original data and standard errors are graphed with letters derived from post-hoc Tukey's analysis of the rank

transformed data.

375

- Table 1: Photosynthetic efficiency of PSII (F_v/F_m) 3 hours and 4 weeks post-rehydration in
- blades frozen for 1, 3, 6, or 12 months. Boxes with a letter in common (within each column) are
- not significantly different (α =0.05). Although analysis was performed on rank transformed data,
- 379 original data and standard errors are shown with letters derived from post-hoc Tukey's analysis
- 380 of the rank transformed data.

Length of Freezing (Months)	F _v /F _m	F _v /F _m
	3 hours post-rehydration	4 weeks post-rehydration
1	0.59 ± 0.01^{ab}	0.63 ± 0.01^{ab}
3	0.58 ± 0.01^{ab}	0.63 ± 0.01^{ab}
6	0.58 ± 0.01^{b}	0.63 ± 0.01^{b}
12	0.56 ± 0.01^{a}	0.61 ± 0.01^{a}

381

19